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Abstract; Under Rytov approximation and geometrical optics approximation, a formula of the

variance of the log-amplitude derivative was deduced for the case of a plane wave propagating

through turbulence. It was clarified that the main factors, which determined the variance, were

the Rytov variance, the turbulence inner scale and the Fresnel size. And, based on the formulae

deduced by Voitsekhovich, the expression for density of phase branch points was modified. The

relationship between the density and the above mentioned parameters was analyzed thoroughly,

which indicates that the density increases with Rytov variance increasing and decreases with

turbulence inner scale and Fresnel size increasing under the condition of Rytov variance less than

1.
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0 Introduction

When a light wave propagates through a
turbulent medium, not only amplitude fluctuation
but also phase fluctuation would occur ™. A lot of
earlier works were on the statistics of scintillation

log-amplitude fluctuation )

[2-4]

( turbulence-induced
under Rytov approximation , but relatively less
on phase fluctuation.

Recently, with the development of astrophysical
studies as well as adaptive optics technology. the
phase  singularities  becomes
In 1974, Nye and Berry ™! firstly

introduced the conception of these singularities

research  on

significant.

attempting to understand radio echoes from the
bottom of the Antarctic ice sheet. J. Krdsa
found the dependence of wavefront dislocation
density on the development of turbulence of the
backward self-excited ionization waves in a neon
discharge by means of experimental study.

Fried and Vaughn ' proved the existence of
phase dislocations (an alternative terminology for
branch points ) when light

waves propagate

through the turbulent medium. Later extensive

theoretical and experimental works % on
atmospheric-compensation and phase reconstruction
algorithms came forth. It has been evidently
verified that the compensation technology could

not work efficiently under the condition where the
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phase branch points present *.

It will have great practical importance to
determine the density of branch points, showing an
expected number of branch points to be found
inside the unit area in terms of turbulence and light
Voitsekhovich et al
attempted to establish the relation between the

propagation parameters.
density of phase branch points and the turbulence

and the propagation parameters under Rytov

U However, they did not present

approximation
an explicit formula for the variance of the log —
amplitude derivative, and used the simulation
results of this parameter in theoretically calculating
the density of phase branch points.

In this paper we derive the formula for the
variance of the log-amplitude derivative under
Rytov approximation in the case of the plane wave
propagation. It's found that the main factors which
determine the variance are the Rytov index, and
the inner scale of turbulence together with the
Additionally, a

modified expression for the density of phase branch

Fresnel size of light waves.

points with the same parameters is established
[11]. The
density and

based on the formulae of Ref.

relationship between the above

mentioned factors is analyzed thoroughly.

1 Variance of the log-amplitude derivative
Under

induced log-amplitude fluctuation, interpreted in

Rytov  approximation turbulence-

terms of a two-dimensional Fourier expansion of

log-amplitude fluctuation in the plane



2 M YUAN Ke-e, et al:Density of Phase Branch Points for a Light Wave Propagation in Atmospheric Turbulence 411

perpendicular to the propagation direction, has the

form

1P L= | e rdgi) (D
where p=(x,y) is the vector spatial coordinate. K
denotes the two-dimensional spatial wave number.
L is the propagation distance. The term dg (k)
represents the random spectral amplitude of the
wave log-amplitude. So the partial derivation of
the log-amplitude can be expressed

- 2(po T Ap) —y(py) |
x Ax Ap—~0

One can derive its ensemble mean square in

the isotropy turbulent medium (In the isotropy
turbulent medium., it is satisfied that D, Cap)>
| 5p-0=0"D,(0)|,~). That is
(ry =Dy (2p) R )():asz(g)‘
! (Ax)* ' x
Thus the variance of the log-amplitude derivative is
related with the

amplitude, D, (p) . and one can similarly get

GO= =g (%)

(2

0=0

structure function of log-

Under Roytov approximation for a plane wave
number k& = 2xn/A,

wavelength. The expression of the structure

with wave where A s

function of log-amplitude can be obtained in the

following way
+oo
|

DX(‘O)ZZ(ZTEk)ZA(I(Ide | [1*]0(/6[0)] .
sini’(LZ;zKZ)qs,,(K,z)KdK )

where @, (k, z) denotes turbulence refractive index
spectrum, and J, (xp) is the zero-order Bessel
function. Here we adopt the turbulence spectrum
@,in form of Tatarskii modified model

@, (k,2)=0.033C% (Z)k:fll”/geXp (—k*/k2) (B)
where k,, =5. 92/1,, [, being the inner scale. The
refractive index structure constant, C:, is a
constant for uniform level propagation path in the
current case.

Upon substituting Eq. (5) into Eq. (4) and
combining Eq. (2) and Eq. (3), we find that the
variance of the log-amplitude derivative for a plane

wave is expressed by

L e
oy — L nr)?x0.033C2 [dz | -
" 2 0 0
D St 2 Ry 2/ 2
sin® ( T i Pexp (—k' k) d (6)
Under the geometrical optics approximation

performing the integration in Eq. (6) and using

Mellin transform, we can obtain

0.132 45 «/EZ“SF‘ 1—72

— J LR T2 wn | L 1 : 57"‘} 2o | KoL 1)1
oy L F’ ﬂ‘ . ‘1’ ‘ KiLL+1 77| 6K, Lt sin ‘ g arctan rari by, +3K.LE K LL
neE U ) S 12 | KL
o J L D S R "i 1 } |7 L
sin | 75 {cos 6 arctan KL% K Lz sin 6 arctan KILZ +3c05\ 6 arctan KLZ |
; 5m| AT A 13737 13/3 | M e ’ T {
sin 12‘ (1—K.Lt) +5K2LE TKLL sin 6| (7

where Ly, = /L/k is the Fresnel size and &=
1.23C2£"% L'V is the Rytov variance. As can be
seen from Eq. (7), the variance of the log-
amplitude derivative depends on the Rytov index,
the turbulence inner scale and the Fresnel size.
From the physical point view, Eq. (7) always
comes into existence because of the following
reason. For most practical problem of light
propagation through atmospheric turbulence we

usually come down to the diffraction region, i. e.

Lo << VAL < L,, where L, is the outer scale of
turbulence, which is supposed infinite in our case.
Thus «,,' is much less than Ly. Therefore ”;2{, is
always larger than zero in the diffraction region.
From Eq. (7), it is easily found that the
derivative is

variance of the log-amplitude

proportional to the Rytov index for a given Fresnel

size under the Rytov approximation. That is
numerically plotted in Fig.1. Three cases are
shown for the turbulence inner scale being 1 mm,
2 mm and 5 mm respectively and the Fesnel zone
size being supposed to 10. 053 mm in our case. It
can be also noted that the variance of the log-
amplitude derivative is inversely proportional to
the Fresnel size for a given Rytov index, which is
shown in Fig. 2, where we suppose inner scale
being 0.5 mm and Rytov index being 0.5, 0.8 and
1 respectively.

From Fig. 1 we can see that the variance of the
log-amplitude derivative decreases with the
turbulence inner scale for the constant Rytov index
case and the constant Ly, case. Fig. 3 shows more
clearly the relationship between azxf_( and [/, for the

case of £5=0.5;0. 8;1 and Lg, =10. 053 mm The
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reason for this is that the main contribution to aif

comes from a vast number of small refractive index

inhomogeneity “*, This influence becomes more

significant with smaller Z,.
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Fig. 1 Variance of the log-amplitude derivative versus

Rytov index for the constant Fresnel size case
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Fig. 2 Variance of the log-amplitude derivative as

a function of the Fresnel size
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Fig. 3 Behavior between the variance of the log-amplitude

derivative and inner scale of turbulence

2 Density of branch points

It has been reported that the density of
turbulence-induced phase branch points, showing
an expected number of branch points to be found
inside the unit area, can be expressed as a function
of the variance of the log-amplitude derivative.
Here we modily it as a {unction of &, K, , ‘7;.1 and
Ly, for a plane wave case

~(KLLi) Mey, r(KZL2)V1?
b = o erfc io, Ly,

where erfc (+++) operator represents inverse error

(8)

function and D, denotes the density of phase

branch points. The parameter 6;‘ is derived in
Eq. (7).

The relationship between the density of phase
branch points and @ for different [/, is shown in
Fig. 4. Three cases are shown for inner scale being
1, 2 and 5 mm respectively. The density is nearly
zero under comparatively weak fluctuation
conditions for various inner scales. Only when £ is
greater than 0. 1 one could find a branch point in a
square meter area when /, <<5 mm. The density
increases continuously with 8 and reaches about 65
per square meter when 8 = 1. Fig. 5 shows the
relationship between D, and the Fresnel size, Ly,
under given Rytov variances for the constant inner
scale case. The density decreases rapidly with the
Fresnel size. What's more, the density D,, versus

L, of turbulence for a given Fresnel size and various
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Fig. 4 Relationship between the density of phase branch

points and the Rytov index for a given Fresnel size
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Fig. 5 Density of branch points versus the Fresnel
size for the case of [,=0.5 mm
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Fig. 6 Density of branch points as a function

of the turbulence inner
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Rytov variances is plotted with Fig. 6. For a fixed
& the density D,, decreases rapidly with /, for /,
less than 2 mm, then does in a relatively slower
manner.

In conclusion the density of turbulence-
induced phase branch points depends strongly on
light propagation parameters and the turbulence

conditions.

3 Conclusion

When a light wave propagates through a
turbulent medium and the scintillation becomes
large enough, phase branch points could appear.
Its density was proved to be related to the variance
of the log-amplitude derivative. However, there
isn't an explicit formula for this parameter. So the
density of branch points is obtained from numerical
simulation at the present time.

In this paper, we have derived the expression
of the variance of the log-amplitude derivative,
which indicates that the variance depends on the
Rytov index, the Fresnel size, and the inner scale
of turbulence. Further more, the density formula
for the branch points is modified under Rytov
approximation The relationship between the

density and the above light and turbulence

parameters is analyzed respectively.

simulation and experimental verification.
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Our future research will involve numerical
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